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Figure 1: Models of artifacts. The �rst one represents an eye blinking, the
second a movement artifact and the third an unstuck electrode.

1 Introduction

The EEG describes the electric activity of the brain and contains important
information about the state of the patient's health. Visual analysis of the EEG
record is a di�cult and tedious task. An automatic quantitative methods of
objective analysis are needed.

The EEG signal is almost always contaminated by various kinds of parasitic
signal (artifacts), i.e. electrical biosignals detected along the scalp by an EEG
machine, but originating from non-cerebral sources. They may be caused by
muscle activity (EMG artifact), movement of the body, eye-induced artifacts
(eye blinks and movements) etc. The amplitude of the artifacts can be quite
large relative to the size of the amplitude of the cortical signals of interest.
This is one of the reasons why it needs an expert to correctly interpret EEGs
clinically and why the artifact presence can damage the results of automatic de-
tection and identi�cation of signi�cant EEG graphoelements. Possible models
of the considered artifacts are in �gure 1.

This report extends the algorithm for removing artifacts from EEG signal,
which was proposed in [15]. The extension is based on using wICA technique
presented by Castellanos and Makarov in [3].

The report consists of six sections. The �rst section aims on independent
component analysis method (ICA) for separation of artifacts from short-term1

1The short-term means ≈2000 samples, what is ≈16s with 128Hz sampling or ≈8s with

256Hz
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signal. The second section presents the wICA approach introduced in [3]. An
overview about discrete wavelet transformation (DWT) and its application in
wavelet denoising are included. The usage of ICA on signals with a lower rank
is discussed in the third section. In the fourth section an ad hoc criterion
for automatic detection of artifacts is proposed. The �fth section presents a
robust method for processing of a long-term signal. The last section shows
some examples on both semi-simulated and real EEG signals.

2 Independent component analysis

Methods of the Independent Component Analysis (ICA) have been shown very
useful in analyzing biomedical signals, such as EEG and MEG [10, 14, 8, 7]. In
particular, it appears that these methods have an ability to separate artifacts
which exceeds in magnitude from useful biological signals.

The aim of the ICA is to convert multichannel signal X via invertible linear
transformation to so called independent components S. Actually, the separated
components may not be truly statistically independent, but they are indepen-
dent as much as possible according to some criterion. In biomedical signal
processing they proved capable to separate responses of di�erent origin, e.g.
electrocardiogram (ECG) of a pregnant woman from ECG of her baby, or an
unwanted interference from a relevant signal [9].

Symbolically, the considered model is,

X = AS (1)

where S represents a d × N matrix, composed of d rows, so that each row
denotes one independent component.

The goal of the ICA is to estimate the mixing matrix A or, equivalently,
the de-mixing matrix W = A−1 or, equivalently, the original source signals S.
Without any loss of generality we can assume that the independent components
are centered (have sample mean equal to zero) and scale normalized so that
their sample mean square is equal to 1.

In the context of the artifact removal it is desirable to have unwanted sig-
nals concentrated in a few separated components. The original signal can be
reconstructed without the artifact components (i.e. the components containing
artifacts) using the estimated matrix A.

In the EEG signal processing, the most widely studied ICA algorithms are
Infomax, [10], SOBI, [1], and FastICA, [6]. While SOBI is based on the second-
order statistics, the other two algorithms use high-order statistics. SOBI was
advocated in [12]. In this paper, we use an algorithm BGSEP (Block Gaussian
Separation), [11] implemented through [13]. BGSEP is based on second-order
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Figure 2: Short EEG with arti�cially added artifact (marked by circle) and
separated components provided by BGSEP. The artifact has been separated
into the �rst component.

statistics as SOBI is, but it uses the nonstationarity of separated signals. While
SOBI is done by approximate joint diagonalization (AJD) of a set of time-
lagged covariance matrices of the signal (the mixture), BGSEP performs an
AJD of zero lag covariance matrices in a partition of the signal. The output of
BGSEP is A−1.

An illustrative example of ICA application is in �gure 2.

3 Application of ICA on low rank signal

If channels are linearly dependent (i.e the signal has lower rank than the number
of channels), there is a requirement for retaining this dependency. However
when ICA is applied and one of the components is omitted due to the presence
of an artifact, generally the reconstructed signal will not satisfy the original
linear dependency, and even the ICA itself might be problematic due to low
conditional number of the data.

To overcome this, only linearly independent part of original signal should
be processed. Toward this goal, the original signal S is transformed via suitable
linear transformationM into a full rank signal Ssub of a lower dimension. Then,
the algorithm for removing artifacts is applied, and original processed signal Ŝ
is obtained from Ŝsub via inverse transformation Minv. Written schematically

• compute Ssub = MS,

• process Ssub and get Ŝsub,

• compute Ŝ = MinvŜsub.

Note that the processed signal Ŝ will satisfy the same dependency as original
signal S.
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Figure 3: Bipolar EEG record. The channels 1-8 stand for FP1-C3, C3-O1,
FP1-T3, T3-O1, FP2-C4, C4-O2, FP2-T4, and T4-O2, respectively.

An example of low rank signal can be EEG record obtained by bipolar mon-
tage, shown in �gure 3. In bipolar EEG each channel represents the di�erence
between two adjacent electrodes.

Due to bipolar montage, the channels si satisfy equations

s1 = −s2 + s3 + s4 (2)
s8 = s5 + s6 − s7. (3)

Then the original processed signal Ŝ can be obtained from the processed
sub-signal Ŝsub by computing s1 and s8 according to equations (2) and (3).
Thus, the transformation via Minv has the form

Ŝ =



−1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 1 −1


Ŝsub (4)
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Figure 4: The full rank subsignal Ssub of signal from �gure 3.

Transformation matrix M can be computed as a pseudoinverse of Minv,

M = (MT
invMinv)

−1MT
inv =

1

4


−1 3 1 1 0 0 0 0
1 1 3 −1 0 0 0 0
1 1 −1 3 0 0 0 0
0 0 0 0 3 −1 1 1
0 0 0 0 −1 3 1 1
0 0 0 0 1 1 3 −1

 (5)

The full rank subsignal of signal from �gure 3 is in �gure 4.

4 Wavelet enhanced ICA

When dealing with real EEGs, ICA estimated independent components cap-
tured beside of present artifacts, frequently contain a considerable amount of
cerebral activity. Rejection of such components causes a loss of a part of the
cerebral activity and, consequently, distortion of the artifact free EEG. Figure
5 and 6 illustrates that.

To overcome this situation, we use method of wavelet enhanced ICA (wICA)
proposed by Castellanos and Makarov in [3]. This method is based on discrete
wavelet transform and its application is called the wavelet denoising.
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Figure 5: Original signal with arti�cially added artifacts (marked by circles).
The right part of the �gure shows the added artifacts.

Figure 6: The signal from the �gure 5 processed by BGSEP. The right part of
the �gure shows the estimated artifacts.

4.1 Discrete wavelet transform

A signal S can often be better processed if is written as a linear decomposition

S(t) =
∑

l

alψl(t), (6)

where l is an integer index for �nite or in�nite sum, al are real-valued expansion
coe�cients, and {ψl(t)} is a set of real-valued functions of t called the expansion
set. If the expansion set is an orthogonal basis, then the expansion coe�cients
can be calculated as

al = 〈S, ψl〉 =

∫
S(t)ψ(t)dt. (7)

For example in the discrete Fourier transform (DFT), the ψl are gonio-
metric functions with di�erent frequencies. Therefore, the DFT can be well
used for localizing the signal frequencies. However is unsuitable to describe a
discontinuities or a sharp corners because it takes a large number of Fourier
components.

For the wavelet expansion, a two-parameter system is used. Therefore

S(t) =
∑

k

∑
j

aj,kψj,k(t), (8)
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Figure 7: Wavelet ψD6. This wavelet was developed by Daubechies in [4].

where both j and k are integer indices and the ψj,k(t) are the wavelet expansion
functions that form an orthogonal basis.

Mostly used case is when the ψj,k are generated from a single wavelet (called
mother wavelet) with compact support by simple scaling and translation

ψj,k(t) = 2j/2ψ(2jt− k) j, k ∈ Z. (9)

Because of this, the wavelets are well suited in localizing the signal both in
frequency and time domains. An example of possible choice of the mother
wavelet is shown in �gure 7.

The set of aj,k is called the discrete wavelet transform (DWT). The expan-
sion coe�cients can be computed very e�ciently by so-called �lter bank. The
�lter bank is a structure that decomposes a signal into a collection of subsig-
nals. In DWT, these subsignals are the wavelet coe�cients at di�erent time
domains. The decomposition into �lter bank is done recursively. For more
about �lter bank and wavelets, see [2].

4.2 Wavelet denoising

Wavelet denoising (WD) is based on taking the discrete wavelet transform
(DWT) of a signal. The transformed signal is passed through a �lter, which
removes coe�cients below a certain threshold and then, the inverse DWT is
taken. The basic idea of WD of signal S can be written in following scheme

• compute the DWT of S, i.e. compute the wavelet coe�cients aj,k

• for all aj,k perform the so-called hard thresholding

âj,k =

{
aj,k if|aj,k| ≥ t,

0 if |aj,k| < t.
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Figure 8: The original signal, which is to be denoised, has the form x(t) =
sin(t)+0.3e(t), where e(t) ∼ N(0, 1). The signal after WD is in the right part.
For comparison, the signal x̃(t) = sin(t) is also shown.

or the so-called soft thresholding

âj,k =

{
sgn(aj,k)(|aj,k| − t) if |aj,k| ≥ t,

0 if |aj,k| < t.

• compute the inverse DWT Ŝ using wavelet coe�cients âj,k.

This scheme was proposed by Donoho in [5].
If a signal has its energy concentrated in a small number of wavelet dimen-

sions, its coe�cients will be large relatively to any other signal or noise that has
its energy spread over a large number of coe�cients. Therefore, WD is able to
remove noise and minor parts of the signal because of the concentrating ability
of the wavelet transform. An illustrative example of WD is in �gure 8.

For more information about the WD technique, see [2].

4.3 Wavelet enhanced ICA

In order to use WD for artifact removing, the partly separated component s is
assumed to be composed of high amplitude artifact a(t) and a low amplitude
residual neural signal n(t). Thus

s(t) = a(t) + n(t). (10)

Using properties of the signals a(t) and n(t) we can estimate them. Asume,
that the artifact a(t) has high magnitude (power) and is localized in the time
and/or in frequency domains, while n(t) is of low amplitude and has abroad
band spectrum. These properties are in accordance with conditions of WD
usage where artifact a(t) is the major part of the signal and n(t) as a noise.
For removing artifact without loss of residual neural signal n(t) an estimate of
a(t) proposed by WD is subtracted from s(t). This is used in the inverse ICA
transform. Schematically, removing artifacts from signal X using wICA can
be described as follows
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Figure 9: Signal from �gure 5 processed by algorithm based on ICA. Right
part of the �gure shows the estimated artifacts.

• compute the ICA S = WX, S = (s1, . . . , sd)

• for i = 1 : d

if si contains an artifact

using WD compute âi(t) from si(t)

remove the artefact from component, thus ŝi(t) := si(t)− âi(t)

else

ŝi(t) := si(t)

• reconstruct original signal without artifacts via inverse ICA X̂ = W−1Ŝ

In our implementation the realization of WD is performed by MATLAB
function âi(t)=wden(si(t),'sqtwolog','s','one',7,'db6'), where the pa-
rameters stand for

• 'sqtwolog' � the threshold selection rule, 'sqtwolog' stands for universal
threshold

√
(2log(.)),

• 's' � the type of thresholding, 's' is for soft thresholding,

• 'one' � multiplicative threshold rescaling, 'one' means that the signal will
not be rescaled (due to ICA implementation, the variance of si(t) is equal
to 1),

• 7 � wavelet decomposition will be performed at level 7,

• 'db6' � the desired orthogonal wavelet will be ψD6, see �gure 7.

Advantages of wavelet improvement can be seen in �gure 9. There is a
result of processing the signal from �gure 5 by wICA.
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5 Automatic detection of artifact component

If an automatic algorithm for removing artifacts is to be proposed, an criterion
for artifact component is needed. This section presents a simple ad hoc criterion
which is suitable in our application.

All considered artifacts have one feature in common: their duration is short
compared to the chosen frame length. Such signal components will be called
sparse in the time domain. Sparse components have large maximum absolute
value (due to the presence of the artifact), and simultaneously the median of
the absolute value close to zero (due to std[s

(j)
i ] = 1, where "std" stands for a

standard deviation). We propose following de�nition of sparsity

sparsity(s(j)) =
max[|s(j)

i |]
std[s

(j)
i ]

log

(
std[s

(j)
i ]

median[|s(j)
i |]

)
, (11)

where s(j) = (s
(j)
1 , . . . , s

(j)
N ) is the j−th i is the time index, and N is the number

of samples in the frame.
We note, however, that the choice of the criterion of the sparsity is not

crucial for our method, and our criterion can be easily replaced by another
user-chosen criterion and corresponding sparsity threshold.

For any de�nition of the sparsity, the component is regarded to be sparse
(artifact), if its sparsity exceeds some threshold. The threshold is a variable of
the proposed artifact removal procedure. A higher value of the limit means a
more conservative (a weaker) artifact reduction. Note that the usage of WD
leads to a stronger robustness against removing cerebral activity in the cases
where too low threshold is used.

6 Processing of long-term signal

Real EEG records are usually long. If the artifact removal is performed sim-
ply frame by frame, the performance may not always be satisfactory. Some
artifacts can fall into two adjacent frames and are masked. In addition, there
is always a nonzero probability of artifact presence in a reconstruction, and a
probability of removing some useful signal part. For these reasons, we found it
useful to perform the artifact removal in multiple frames three times, each time
with a di�erent partitioning of the signal into frames. Each partitioning gives
one possible artifact-free reconstruction of the whole signal. These reconstruc-
tions are combined together in a special way so that the �nal reconstruction is
generally smoother and more artifact-free than the partial reconstructions.

Let N denotes the length of one frame. For simplicity we assume that the
length of the signal is L = nN , for suitable integer n. At �rst, the signal is
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A

B1

B2
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Figure 10: In three independent steps the signal A is divided into frames Bi

where ICA (or wICA) is applied. After obtaining partial reconsturctions, they
are combined channel by channel, segment by segment into �nal reconstruction.
Location of frames C is schematicaly shown.

divided into frames [1 + (k − 1)N, kN ] where k = 1 . . . n. In these frames the
algorithm for removing artifacts is applied. The second partial reconstruction
is done in similar way with frames [1 + N/3 + kN,N/3 + (k + 1)N ] for k =
1 . . . n−1. The third partitioning is [1+2N/3+(k−1)N, 2N/3+kN ] with k =
1 . . . n−1. For the second and the third reconstruction no ICA is performed at
the beginning and at the end of the signal. In this case only �rst reconstruction
is used in order to get �nal reconstruction.

Combination of three reconstructions into one proceeds sequentially, inde-
pendently channel by channel, in segments of length T which are generally
shorter than the frames where ICA has been applied. Again for simplicity
let L = mT , where m is suitable integer. Hence segments have the form
[1 + (k − 1)T, kT ] for k = 1 . . .m.

Division of the signal into frames and segments is shown schematically in
�gure 10.

The method for combination partial reconstructions into one follows. Let
r1, r2 and r3 denote three partial reconstructions in k-th channel in the l-th
segment. Let µi denote maximum absolute value of elements of ri. We assume
that at least one partial reconstruction is artifact free. Without any loss of
generality we assume that µ1 ≤ µ2 ≤ µ3. Therefore, at least r1 is artifact free.
Let ρij = ‖ri − rj‖2 denote squared Euclidean distances of the reconstructions
and let ρr denote the average squared norm ‖r‖2 of a segment r of the same
length as ri, randomly or systematically chosen in the whole available signal.

The �nal reconstruction r is obtained as the average of one, two, or all
three partial reconstructions according to validity of condition (12) and (13),
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see diagram 11.

max(ρ12, ρ13, ρ23) ≤ 2 min(ρ12, ρ13, ρ23) (12)

max(ρ12, ρ13, ρ23) > 2ρr. (13)

Performance of combination procedure is shown in illustrative example in
�gure 12. The �gure shows three possible reconstructions which still contain
some artifacts (artifacts has been added arti�cially). One of the reconstructions
also simulates the situation when all signal has been removed due to an ICA
or automatic artifact detection failure. The fourth channel contains the �nal
reconstruction.

7 Examples of artifacts removal

7.1 Arti�cial artifacts

In this part we present an example of performance of the proposed algorithm
on EEG signal with arti�cially added artifacts (models are in �gure 1).

Original signal and added artifacts are in �gure 13. The signal was sampled
by 128Hz and is unipolar.

The �gure 14 shows the processed data. The frames for wICA had 2000
samples (≈15s), and the fragments for the reconstruction had 128 samples
(=1s). Limit sparsity was 2.

7.2 Real artifacts

In this part we present an example of performance of the proposed algorithm
on EEG signal with real artifacts.

Original signal and added artifacts are in �gure 15. The signal was sampled
by 128Hz and is bipolar.

The �gure 16 shows the processed data . Settings of the algorithm were the
same as before with arti�cial artifacts.

Advantages of usage wICA can be seen by comparison of �gure 16 and �gure
17, which shows the signal processed with ICA without wavelet enhancement.

Performance of combination procedure in this case is shown in �gure 18.

13



r1 r2 r3

(12) or
(13)

r = r1+r2+r3

3

ρ12 < ρ23 r = r1+r2

3

r = r1

yes

no

yes

no

Figure 11: Scheme of combination of partial reconstructions. The �rst decision
means that there are signi�cant di�erence between r1 r2 r3. The second decision
divides the cases where r2 contains or not the artifact (note that the r1 is
assumed to be artifact-free).
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Figure 12: The �rst three components show simulated partial reconstructions
of one channel of the signal, the fourth one shows the �nal reconstruction.
Vertical lines denotes partitioning into frames and segments (shown in the
�fth channel).

Figure 13: Original signal contaminated by several arti�cial artifact. The right
part of the �gure shows the added artifacts.

Figure 14: Signal from �gure 13 processed by algorithm based on wICA. The
right part of the �gure shows the estimated artifacts.
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Figure 15: Original data contaminated by real artifacts.

Figure 16: Signal from �gure 15 processed by algorithm based on wICA. The
right part of the �gure shows the estimated artifacts.

Figure 17: Signal from �gure 15 processed by algorithm based on ICA. The
right part of the �gure shows estimated artifacts.
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Figure 18: The �rst three components (channels) show partial reconstructions
of the second channel of the signal in �gure 15, the fourth channel contains
the �nal reconstruction. Vertical lines denotes partitioning into frames and
segments (shown in the �fth channel).

8 Conclusion

The wICA improvement of algorithm for removing artifacts from EEG signal
has been presented. The algorithm is suitable for artifacts that have relatively
short duration and exceed in magnitude the neighborhood signal and is more
robust than the algorithm without wavelet denoising. The method was tested
namely on eight-channel neonatal EEG recordings and showed good perfor-
mance both in arti�cial and real artifacts removing. Other experiments not
included in this report showed that the method can work equally well in sce-
narios with more channels. In fact, if the number of channels is larger, the
artifact removal is easier. Note that the algorithm can be used very e�ciently
because processing of an eight-channel EEG with 77000 samples (≈10min with
128Hz sampling) takes only about ten second.
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